
Efficient Negative Selection Algorithms by
Sampling and Approximate Counting

Johannes Textor

Theoretical Biology & Bioinformatics
Universiteit Utrecht

Paudalaan 8
3584 CH Utrecht, NL

johannes.textor@gmx.de

Abstract. Negative selection algorithms (NSAs) are immune-inspired
anomaly detection schemes that are trained on normal data only: A set
of consistent detectors – i.e., detectors that do not match any element
of the training data – is generated by rejection sampling. Then, input
elements that are matched by the generated detectors are classified as
anomalous. NSAs generally suffer from exponential runtime. Here, we in-
vestigate the possibility to accelerate NSAs by sampling directly from the
set of consistent detectors. We identify conditions under which this ap-
proach yields fully polynomial time randomized approximation schemes
of NSAs with exponentially large detector sets. Furthermore, we prove
that there exist detector types for which the approach is feasible even
though the only other known method for implementing NSAs in polyno-
mial time fails. These results provide a firm theoretical starting point for
implementing efficient NSAs based on modern probabilistic techniques
like Markov Chain Monte Carlo approaches.

1 Introduction

The adaptive immune system is, alongside the central nervous system, one of the
two important cognitive systems in vertebrates. Within this system, the T cells
are responsible for performing many important cognitive tasks, like detecting
viral infections in cells. Because T cells can perform actions with potentially
hazardous consequences for their host organism – e.g., they can kill cells that
express “anomalous” surface molecules – it is important to ensure that T cells
do not incorrectly classify normal metabolic activity as anomalous. At the same
time, it is crucial that an organism’s T cell repertoire provides protection against
the huge set of pathogens it may potentially encounter. Negative selection is an
immunological process that helps achieve these two goals: Newborn T cells with
randomly generated receptors are exposed to normal molecular structures from
the host organism (self), and those that react to any self structure are killed.
Only cells that survive negative selection become part of the T cell repertoire.
Motivated by a need for better computer security systems, Forrest et al. [1]
conceived a generic classification scheme, which they called the negative selection
algorithm (NSA), that mimics this simple yet effective biological paradigm.

The NSA scheme can be applied to very diverse types of data. We will assume
that the data to be classified originates from a universe U , which is usually
parameterized by some index L that characterizes the length of an input element
(e.g., for an alphabet Σ, we might use U = ΣL). Moreover, we assume that a
basis set of patterns (detectors) P is given, such that each π ∈ P matches a subset
of U . The patterns in P represent T cells, while the elements of U represent the
molecular structures examined by T cells. For instance, a frequently used class
of patterns, motivated by a model of how real T cells “see” antigen [2], are the
so-called “r-contiguous detectors”. Here, U = P = ΣL, and a pattern is said to
match a universe element if both are identical in at least r contiguous positions.
E.g., for r = 2 and U = {0, 1}3, the patterns 011 and 110 match the string 010
but the pattern 111 does not. As another example, we could use U = {0, 1}L

and P = {0, 1, ∗}L to encode binary patterns with don’t-care-symbols (e.g. 0∗∗∗
would match all strings of length 4 starting with 0).

NegativeSelection(S, M, n).
Input: Sample S ⊆ U , set M ⊆ U , integer n.
Output: For each m ∈M , either (m, +1) or (m,−1).
1 D ← ∅
2 while |D| < n do // training step
3 pick π ∈ P uniformly at random
4 if π does not match any s ∈ S then
5 D ← D ∪ {π}

6 for each m ∈M do // classification step
7 if any π ∈ D matches m then
8 output (m, +1)
9 else

10 output (m,−1)

Fig. 1. Pseudocode of the negative selection algorithm (NSA) considered in this paper.
In the literature on NSAs (e.g., [3, 4]), S is frequently called a self set, M a monitor
set, and D is called the detector set. For the sake of conciseness, we treat the set D as
a multi-set, i.e., D can contain the same detector more than once.

Fig. 1 shows the pseudocode for a typical NSA scheme. A set of detectors
D with size n is generated by rejection sampling, i.e., detectors are sampled at
uniform and added to D if they match no element of the input sample S. Subse-
quently, in the classification step, the elements of M are classified as anomalous
(+1) if matched by any detector in D and as normal (−1), otherwise.

2 Related Work and Our Contribution

Layman implementations of the NSA typically suffer from exponential runtime
[5, 4]. Two issues can arise: First, the rejection sampling step may be rate-limiting

2

if the input set S is “large” such that most detectors match some s ∈ S, and have
to be rejected. Second, prohibitively many detectors might be needed to achieve
acceptable detection rates in the classification step. The main contribution of
this work is that we establish a novel possibility of implementing NSA algo-
rithms efficiently: We investigate under which conditions it is possible to replace
the rejection sampling in the training step by a more efficient procedure that
requires only polynomial time to find a single detector. Moreover, we show that
a similar sampling approach can be employed to determine the NSA outcome
approximately even when n is very large.

Our research on the efficiency of NSAs has two main motivations. First, a
widely held view in the field of artificial immune systems (AIS) used to be that
NSAs cannot be efficiently implemented. E.g., for r-contiguous detectors, it was
hypothesized that even deciding the existence of a single detector that fails to
match all s ∈ S is already NP-complete [3]. This idea led some researchers to
conclusions like “negative selection [algorithms] ... can never scale” [6], or that
“future work in this direction is not meaningful” [5]. It stands to reason that
one wishes to verify whether unproved claims that motivate such bold state-
ments really hold true. For some special cases, we have previously shown that
polynomial-time NSAs can be obtained using the “detector compression” tech-
nique [7, 8], thus disproving the NP-completeness hypothesis for r-contiguous
detectors [3]. However, we subsequently proved that the detector compression
technique is not applicable to many interesting types of detectors [9], which
raised the question whether other methods might exist to obtain efficient NSAs.
The technique that we put forward in this paper is able to address at least some
cases where detector compression is infeasible.

Independently of the debate in the AIS community, NSAs find their main
application in the field of theoretical immunology, where they are used as com-
ponents of simulations of the real immune system (e.g. [10–12]). Recently, a
NSA-based model was used to show that genetically determined differences in
negative selection can partly explain why certain individuals are able to control
HIV infections [13]. In these computational biology applications, the NSA can-
not be replaced by traditional machine learning methods because it is used as
a simulation of the real negative selection process rather than merely a generic
classification scheme.

Therefore, increasing the efficiency of NSAs benefits not only AIS but is also
important for computational immunology.

3 Our Approach

The basic idea behind our approach is very simple: Instead of generating the
detector set D in the training step by rejection sampling (lines 2-5 in Fig. 1),
we sample directly from the subset of those detectors in P that do not match
any s ∈ S. For instance, in many cases we might be able to construct a graph
that encodes the desired detectors, perform a “sufficiently long” random walk
on this graph, and output the last vertex we visit. Provided the random walk is

3

“rapidly mixing” (i.e., approaches the equilibrium distribution sufficiently fast),
this approach, which is known as the Markov Chain Monte Carlo method [14],
can efficiently generate an approximately uniform sample from the set of S-
consistent detectors.

To proceed, we need some notation. We abbreviate the set {1, . . . , n} ⊆ N by
[1, n] and the set {−1, 1} by ±1. Moreover we write “u.a.r.” instead of “uniformly
at random”. Given a universe U , a detector type D = (P,M) is a tuple of a set
P of patterns (or detectors) and a matching function M : P × U → ±1. Given
a detector π ∈ P and an element x ∈ U , if M(π, x) = 1 we say “π matches x”
and “π does not match x”, otherwise. A sample is a labeled set S ⊆ U × ±1.
A negative sample is a sample in which all labels are −1. A detector π ∈ P is
called S-consistent if for every (x,+1) ∈ S, we have M(π, x) = +1, and for every
(x,−1) ∈ S, we have M(π, x) = −1. A detector set D ⊆ P is called S-consistent
if it only contains S-consistent detectors. The set of all S-consistent detectors is
written as D[S]. The consistency problem is defined as follows: Given a sample
S, decide whether D[S] is empty. A consistency problem is called k+-restricted
if it is only defined for input samples that contain exactly k elements labeled
with +1.

Given a negative sample S and an element x ∈ U , the detector sampling
distance [9] ∆D(S, x) is defined by

∆D(S, x) =

{
|D[S∪{(x,+1)}]|

|D[S]| D[S] 6= ∅
⊥ otherwise

, (1)

with ⊥ denoting the undefined value. We previously showed the following.

Theorem 1 (Simulating NSAs via the Sampling Distance [9]). If ∆D
can be computed in expected polynomial time1, then there exists a randomized
algorithm that is input-output-equivalent to NegativeSelection(S, M, n) and
runs in expected polynomial time.

Instead of simulating the NSA explicitly, we can also simply output ∆D(S, m)
for every input element m ∈ M and use this fraction as an “anomaly score”. For
this application, we will be satisfied if we can compute only the numerator of
Equation 1, because the denominator is anyway equal for all m ∈ M . However,
counting solution sets of combinatorial problems is often infeasible – we provided
some according negative results previously [9]. Therefore, the method that we
put forward in this paper rests on a slightly weaker precondition.

Proposition 1. Suppose there exists an algorithm that, for every negative in-
put sample S ⊆ U × {−1}, outputs a detector π ∈ D[S] sampled u.a.r. in ex-
pected polynomial time. Then there exists an input-output-equivalent algorithm
for NegativeSelection(S, M, n) that runs in expected polynomial time in the
size of S and M as well as in n.
1 Throughout the paper, this means that the expected runtime must be polynomial

for all possible inputs.

4

Hence, by sampling directly from D[S], we can overcome the efficiency prob-
lems of rejection sampling. However, for achieving acceptable detection rates
(in AIS) or for simulating realistic immune systems (in computational immunol-
ogy), n often has to be very large. Therefore, we would like to avoid generating
detectors explicitly. This too can be achieved if we sample from both D[S] and
D[S ∪ {(x,+1}], i.e., from the set of consistent detectors for both 0+-restricted
and 1+restricted input samples.

Proposition 2. Suppose there exists an algorithm as defined in Proposition 1
and another algorithm that, for every input sample S ⊆ U × {−1} and every
element x ∈ U , samples a detector d ∈ D[S ∪ {(m,+1)}] u.a.r. Furthermore,
assume that the 0+- and 1+-restricted consistency problems for D are both “self-
reducible” [15]. Then there exists a fully polynomial time randomized approxima-
tion scheme (FPRAS) for computing the detector sampling distance ∆D(S, m).

Proof. For self-reducible problems, Jerrum et al. [15] showed that a polynomial
time u.a.r. sampler2 can be used to construct an algorithm that determines the
number of solutions within factor 1 + ε in polynomial time in both the input
size and 1/ε. Applying this theorem, we obtain FPRASs for computing both the
numerator and the denominator of Equation 1. Therefore, we can approximate
∆D within factor 1 + ε′, where ε′ = 2ε + ε2. ut

For lack of space, we cannot reproduce the precise definition of self-reducibility
here, and refer the reader instead to Jerrum et al [15]. Intuitively, self-reducibility
means that solutions to the whole problem can be constructed by extending so-
lutions of slightly smaller instances. Self-reducibility seems to be “the rule rather
than the exception” [15] for combinatorial problems. For instance, it is easy to
show that all detector types that have so far been used in string-based negative
selection (summarized in [9]) lead to self-reducible consistency problems.

Hence, via efficient detector sampling, we can approximate the results of
detector compression techniques [8]. A natural question is therefore whether
efficient detector sampling can be possible when efficient detector compression
(which leads to detector counting algorithms) is not. In the upcoming section,
we prove that this can indeed be the case.

Theorem 2. There exists a detector type D for which (1) computing ∆D is #P-
hard, and (2) there exist expected polynomial time algorithms for sampling u.a.r.
from both D[S ∪ {(x,+1)}] and D[S], implying an FPRAS for ∆D.

The classical example for a combinatorial problem where counting the solu-
tions is #P-hard but sampling from the solution space is easy is DNF-satisfiability
[15]. However, consistency problems correspond to conjunctions of constraints.
Therefore, there appears to be no way to encode DNF-satisfiability in a 0+- and
1+-restricted consistency problem (without exponential blowup), which is the
main technical challenge that needs to be overcome to prove Theorem 2.
2 In fact, it is only required to sample approximately u.a.r. from D[S] and D[S ∪
{(x, +1)}]. However, in this paper we restrict ourselves to u.a.r. sampling.

5

4 Proof of the Main Theorem

We first have to prove a technical lemma.

Lemma 1 (Embedding an Additional Object into a Uniform Sampler).
Let X be a finite set of unknown cardinality |X| > 1, and suppose that there exists
an algorithm A that generates an element of X u.a.r. in expected polynomial
time. Let x∗ /∈ X. Then there exists an algorithm A∗ that generates an element
of X ∪ {x∗} u.a.r. in expected polynomial time.

Proof. Let n denote the unknown cardinality of X. Our procedure A∗ works as
follows: (1) A∗ samples an element a ∈ X u.a.r. (2) A∗ repeatedly samples a
tuple (x, y) ∈ X2 u.a.r. until (x, y) 6= (a, a). (3) If x = a, then A∗ outputs x∗.
Otherwise, A∗ outputs a. Now the probability that A∗ outputs x∗ is

n− 1
n2 − 1

=
1

n + 1
,

and thus the output probability distribution is uniform over X∪{x∗}. The lemma
now follows by noting that because |X| ≥ 2, step (2) above terminates after a
constant expected number of iterations. ut

Now we are prepared to prove Theorem 2.

Proof (Theorem 2). The basic idea is to define a detector type D whose consis-
tency problem amounts to finding graph colorings. We recall that a k-coloring
of a graph G = (V,E) is a mapping C : V → [1, k], and it is called valid if
C(v) 6= C(w) for all {v, w} ∈ E. Counting the k-colorings of a graph with max-
imal degree κ is #P-hard for all constants k, κ ≥ 3 [16]. Still, for k > κ(κ + 2)
there exists an algorithm that samples u.a.r. in expected polynomial time from
the valid k-colorings of a given graph. Below, we assume that κ ≤ 3 and k ≥ 16.
This includes the #P-hard case κ = 3, k = 16 as a special case, which will suffice
to establish our hardness result. Note that a graph of maximum degree 3 is al-
ways 16-colorable, such that the decision version of the graph coloring problem
is trivial for these constants. In the following, we denote the maximum degree
of a given graph G by κ(G).

To make the proof more palatable, we proceed in three steps. First we show
that there exists a detector type D for which determining |D[S]| is #P-hard,
even though we can sample u.a.r. from D[S] for 0+-restricted samples S. This
is not yet exactly what we need because |D[S]| is only the denominator of the
detector sampling distance ∆D (see Equation 1); infeasibility of computing the
denominator of a fraction does not imply infeasibility of computing the entire
fraction. In the second step, we deal with this technicality. In the third step,
we show the feasibility of sampling consistent detectors for both 0+- and 1+-
restricted samples u.a.r.

Step 1. Our universe U is the set of graphs with maximum degree ≤ 3 and
one labeled edge, which we call the root edge ρ:

U = {(V,E, ρ) : V = [1, L], E ⊆ {e ⊆ V : |e| = 2}, ρ ∈ E, κ(V,E) ≤ 3} .

6

sample s1 sample s2 sample s3
induced

graph G(S)
consistent
graph π

Fig. 2. Illustration of the proof of Theorem 2. The definition ofM ensures that every
edge {u, v} sharing a node with a root edge in one sample must also occur in every
other sample whose root edge contains u or v, otherwise there exists no S-consistent
pattern. For example, if any of the non-root edges in sample s2 were missing, then
no pattern could be consistent with (s1,−1), (s2,−1) and (s3,−1). The induced graph
G(S) is the union of all root edges. The pattern set P is the set of all colored graphs,
and a graph π ∈ P is S-consistent if and only if it contains all edges from the samples
and its nodes are validly colored with respect to G(S). Edges not occurring in the
samples may only occur in π if they do not touch any root edge from S, like the dashed
edges in the rightmost graph.

Figure 2 shows three examples s1, s2, and s3 (with roots edges ρ in bold).
We are going to define a detector type gcol = (P,M) whose pattern set

P and matching function M will be constructed in such a way that a negative
sample S ⊆ U × {−1} encodes an induced graph G(S). Counting S-consistent
patterns will be equivalent to counting the valid k-colorings of G(S). We define

P = {(V,E, C) : V = [1, L], E ⊆ {e ⊆ V : |e| = 2}, C : V → [1, k]} ,

which is simply the set of all arbitrarily k-colored graphs with L vertices (the
coloring need not be valid). The matching function is defined as follows:

Mgcol ((V,E, C), (V,E′, ρ)) =


+1 (1) E′ * E

or (2) E \ E′ contains a ρ-adjacent edge
or (3) C is no valid coloring for ρ

−1 otherwise

Now consider a negative sample S, and suppose there does not exist an S-
consistent pattern π = (V,E, C). This can occur if and only if there exist two
samples (V,E1, ρ1), (V,E2, ρ2) ∈ S and an edge e ∈ E1 such that e shares a node
with ρ1 but not with ρ2. In other words, an S-consistent pattern exists if and
only if it holds true that once an edge {u, v} appears in one sample graph where
either u or v belongs to the root edge, it appears in every sample graph where u
or v belongs to the root edge. Therefore, the existence of an S-consistent pattern
can be decided in polynomial time.

Consider a negative sample S = {((V,E1, ρ1),−1), . . . , ((V,En, ρn),−1))} for
which at least one consistent graph pattern π = (V,E, C) exists. We define the
induced graph G(S) as the union of all root edges in S, i.e., G(S) := (V,∪i{ρi}).

7

The definition of M directly ensures that (1) every S-consistent graph π ∈ P
contains G(S) as a subgraph, and (2) C is a valid coloring of G(S). Moreover,
it is not hard to show that G(S) has maximum degree ≤ 3 – if that weren’t
the case, then there would either be no S-consistent pattern or one sample with
maximum degree > 3. Edges that did not occur in S and do not share nodes
with G(S) may or may not be present in π (dashed edges in the consistent graph
π in Figure 2), and nodes that are not in G(S) (like the top left and bottom left
nodes in the consistent graph in Figure 2) are assigned an arbitrary color.

Let #χ(G(S)) be the number of valid k-colorings of G(S). Let ε denote the
number of edges not adjacent to nodes in G(S) (those which may or may not be
present in S-consistent graphs). Then, assuming |gcol[S]| > 0, we have

|gcol[S]| = #χ(G(S)) · 2ε .

Now suppose we had an algorithm for computing |gcol(S)|. Then we could
determine the number #χ(G) of valid k-colorings for an arbitrary graph G of
maximal degree κ = 3 as follows: Decompose G = (V,E) into sample graphs by
creating for each edge e = {u, v} ⊆ V a sample graph containing root edge e
and its adjacent edges in G. Create a sample S containing all these graphs with
negative labels. Then G(S) = G, and

#χ(G) =
|gcol[S]|

2ε

gives the number of valid k-colorings of G. Because ε can be computed in poly-
nomial time from S, computing |gcol[S]| must thus be #P-hard3 for k ≥ 3.

Conversely, given an arbitrary negative sample S over U , we can sample from
gcol[S] as follows. First check whether |gcol[S]| = 0 as discussed above. If this
is not the case, we compute the induced graph G(S) = (V,E), and sample a valid
coloring of G(S) u.a.r. using Huber’s algorithm [14]. Next, consider every edge
{u, v} ⊆ V that does not occur in S and does not share nodes with root edges
from S, and insert {u, v} into E with probability 1/2. The resulting graph is
sampled u.a.r. from gcol[S]. An example result of this process is depicted as
the rightmost graph in Figure 2.

Step 2. So far we proved that computing |gcol[S]| is #P-hard. To show
that computing ∆gcol is also #P-hard, we insert a special pattern π̂ into P and
a special element x̂ into U such that π̂ matches only x̂ and vice versa. From
now on, let gcol denote this augmented pattern class. Suppose we had access
to an oracle that computes ∆gcol(S, x̂). We could use this oracle to count the
k-colorings of a graph G = (V,E), V = [1, L], as follows: We create a negative
sample S with G(S) = G. Then

∆gcol(S, x̂) =
1

1 + #χ(G) 2ε
.

3 Strictly speaking, only functions to the natural numbers can be #P-hard. There-
fore, more formally correctly we should say that every #P-hard function could be
computed by a polytime algorithm with single-call access to an oracle for |gcol[S]|.

8

Hence, we could compute #χ(G) from ∆gcol(S, x̂) by rearranging the above,
which implies that computing ∆gcol(S, x̂) is #P-hard.

Step 3. It remains to show that for all S ⊆ U × {−1} and for all m ∈ U ,
we can generate elements of both gcol[S] and gcol[S ∪ {(m,+1)}] u.a.r. in
expected polynomial time. We start with the case where there is no positive
sample. If S contains x̂, then π̂ is not S-consistent, and we output a pattern
sampled at uniform from gcol[S]. Otherwise, π̂ is S-consistent, and we apply
Lemma 1 to sample a pattern at uniform from gcol[S]∪{π̂}. Now, consider the
case where there is one positive sample (m,+1). If m is a subgraph of the union
of all sample graphs and the root of m occurs as a root in S, then there is no
S-consistent pattern that matches m. Otherwise4, m contains at least one edge
e not present in S. We iteratively generate S-consistent patterns π u.a.r until we
find one that matches m. Each π will match m with probability ≥ 1/2, because
the probability that π contains e is 1/2. Therefore, after a constant expected
number of trials we find the desired π, which is u.a.r. from gcol[S∪{(m,+1)}].

ut

5 Outlook

In this paper we presented a novel generic approach for implementing negative
selection algorithms (NSAs) efficiently and proved that there exist cases where
the new approach is feasible even though the detector compression technique
that we put forward previously [9] is not. An obviously desirable next step would
be to demonstrate the feasibility of this approach in practice. Sampling-based
approximation algorithms, in particular Markov Chain Monte Carlo (MCMC)
methods, have proved successful in many areas, e.g. Bayesian network analysis,
even in cases where rigorous proofs for convergence in polynomial time (which
can be notoriously difficult) are lacking. One appealing feature of MCMC ap-
proaches is their typical ease of implementation. This presents an advantage
over detector compression, which often relies on rather intricate data structures
[8]. To illustrate this, we conclude by defining an MCMC method for a natural
detector type, Boolean monomials, and leave proving or disproving its efficient
convergence as an open problem.

Open Problem. For U = {0, 1}L, P = {0, 1, ∗}L, let π match x if π and x
are identical at all positions i where πi 6= ∗ (π can be interpreted as a Boolean
monomial). Given S ⊆ UL × {−1} and m ∈ UL, generate an S ∪ {(m,+1)}-
consistent pattern π as follows. Initialize π = m. Then, in each step, do nothing
with probability 1/2 and else, pick a position i ∈ [1, L] u.a.r. If πi = ∗, set πi =
mi. Otherwise, replace πi by ∗ and check whether the resulting pattern matches
any s ∈ S. If yes, undo the change, else continue. This algorithm describes
an ergodic Markov chain M whose stationary distribution is uniform over all
S ∪ {(m,+1)}-consistent patterns. Prove or disprove: M is rapidly mixing.

4 For lack of space, we omit the required, but technical special treatment of |V | < 5.

9

References

1. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, IEEE Computer Society Press (1994) 202–212

2. Percus, J.K., Percus, O.E., Perelson, A.S.: Predicting the size of the T-cell receptor
and antibody combining region from consideration of efficient self-nonself discrim-
ination. Proceedings of the National Academy of Sciences of the United States of
America 90(5) (1993) 1691–1695

3. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial
immune systems. Theoretical Computer Science 403 (2008) 11–32

4. Stibor, T.: Foundations of r-contiguous matching in negative selection for anomaly
detection. Natural Computing 8 (2009) 613–641

5. Stibor, T.: On the Appropriateness of Negative Selection for Anomaly Detection
and Network Intrusion Detection. PhD thesis, Technische Universität Darmstadt
(2006)

6. Aickelin, U.: Special issue on artificial immune systems: editorial. Evolutionary
Intelligence 1(2) (2008) 83–84

7. Elberfeld, M., Textor, J.: Efficient algorithms for string-based negative selection.
In: Proceedings of the 8th International Conference on Artificial Immune Systems
(ICARIS 2009). Volume 5666 of Lecture Notes in Computer Science., Springer
(2009) 109–121

8. Elberfeld, M., Textor, J.: Negative selection algorithms on strings with efficient
training and linear-time classification. Theoretical Computer Science 412 (2011)
534–542

9. Lískiewicz, M., Textor, J.: Negative selection algorithms without generating de-
tectors. In: Proceedings of Genetic and Evolutionary Computation Conference
(GECCO’10), ACM (2010) 1047–1054

10. Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of
cytotoxic T cell responses. Journal of Theoretical Biology 228 (2004) 227–240

11. Chao, D.L., Davenport, M.P., Forrest, S., Perelson., A.S.: The effects of thymic
selection on the range of T cell cross-reactivity. European Journal of Immunology
35 (2005) 3452–3459

12. Košmrlj, A., Jha, A.K., Huseby, E.S., Kardar, M., Chakraborty, A.K.: How the
thymus designs antigen-specific and self-tolerant T cell receptor sequences. Pro-
ceedings of the National Academy of Sciences of the USA 105(43) (2008) 16671–
16676

13. Košmrlj, A., Read, E.L., Qi, Y., Allen, T.M., Altfeld, M., Deeks, S.G., Pereyra,
F., Carrington, M., Walker, B.D., Chakraborty, A.K.: Effects of thymic selection
of the T-cell repertoire on HLA class I–associated control of HIV infection. Nature
465 (2010) 350–354

14. Huber, M.: Exact sampling and approximate counting techniques. In: Proceedings
of the thirtieth annual ACM symposium on Theory of computing. STOC ’98, New
York, NY, USA, ACM (1998) 31–40

15. Jerrum, M.R., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science 43 (1986)
169–188

16. Bubley, R., Dyer, M., Greenhill, C., Jerrum, M.: On approximately counting colour-
ings of small degree graphs. SIAM Journal on Computing 29 (1998) 387–400

10

