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Abstract. Searching a space with locally clustered targets (think pick-
ing apples from trees) leads to an optimization problem: When should the
searcher leave the current region, and invest the time to travel to another
one? We consider here a model of such a search process: infection screen-
ing by T cells in the immune system. Taking an AIS perspective, we ask
whether this model could provide insight for similar problems in comput-
ing, for example Las Vegas algorithms with expensive restarts or agent-
based intrusion detection systems. The model is simple, but presents a
rich phenomenology; we analytically derive the optimal behavior of a
single searcher, revealing the existence of two characteristic regimes in
the search parameter space. Moreover, we determine the impact of per-
turbations and imprecise knowledge of the search space parameters, as
well as the speedup gained by searching in parallel. The results provide
potential new directions for developing tools to tune stochastic search
algorithms.

1 Introduction

Natural resources such as fruit, drinking water, minerals, or prey are most often
unevenly distributed in the environment. Moreover, these resources are not in-
finite, and may be depleted by consumption. Animals thus need to adjust their
foraging behaviour accordingly. For example, many predators migrate to differ-
ent hunting grounds from time to time to ensure a continuous supply with prey.
Foraging theory [1] is a mathematical treatment of animal foraging behaviour
based on the hypothesis that animals evolve to maximize their energy intake,
and thus find ways to use their environment optimally. This gives rise to opti-
mization problems such as the giving up time: when should a forager give up its
current hunting ground, and invest the energy necessary to find a new one?

In this paper, we introduce a “foraging-type” model that we developed to un-
derstand the stochastic search of T cells for antigen. Taking an AIS perspective,
we ask: what could we learn from this model that could be useful for similar op-
timization processes in computing and operations research? Scenarios that lead
to optimization problems of this type include the following:

– Security: Immune-inspired distributed intrusion detection systems (e.g. [2],
[3]) mimicking the function of T cells: They consist of large numbers of



agents, each specialized to detecting a certain type of intrusion, which con-
tinuously migrate between different hosts or switches in the network.

– Economy: Quality control procedures in companies that are organized into
branches. The employees in charge of quality control divide their time be-
tween inspecting branches and travelling between branches.

– Algorithms: Optimal restart of Las Vegas algorithms with expensive restarts.
A Las Vegas algorithm is an algorithm with deterministic output whose run-
time is a random variable. Such algorithms can be accelerated by restarting
them when an unfavorable region of the run time distribution is reached; a
well-known example is Schöning’s probabilistic SAT solver [4]. An optimal
strategy for restarting such algorithms was given by Luby et al. [5]. However,
this strategy does not take into account the time needed for restarting the
algorithm, which may be substantially larger than the cost of a single search
step [4]. Taking this into account leads to a “foraging-type” optimization
problem.

1.1 Model Definition and Contributions

The general case of our model can be stated as follows. Consider an indexed set of
compartments, which we call bags. For each bag i, we have a discrete probability
density function Pi(t), giving the probability of hitting the target at time t in
bag i, where t = 0 is the time that the bag is entered. Furthermore, we have a
function T (i, j) denoting the time needed to travel from bag i to bag j. We will
assume that the searcher has no knowledge about the local target densities (it
does not know the Pi(t) for the bags i it visits), and thus simply chooses the
next bag uniformly at random. However, the searcher may have some knowledge
about the global target density (e.g., a suitable average of all the Pi(t)).

A searcher like this learns nothing as it progresses, because the search is
already finished upon encountering the target. As proved by Luby et al. [5], the
optimal strategy in such a case is to restart the search in fixed time intervals. A
strategy can thus be defined simply as a constant residence time R to be spent
in each bag before travelling to a different one. Denote by H the first hitting
time, i.e., the random variable giving the time that the searcher finds the first
target. Our goal is to set R such as to minimize the expected hitting time E[H].
In more complex cases, one might consider R as a function whose input reflects
the searcher’s knowledge about its environment.

In the present paper we focus on a special case of our model where the
transit time T (i, j) is constant, and sampling in the bags is by drawing with
replacement. This special case is a reasonable model of T cell infection screening
in the immune system, which is justified in detail in Section 1.2. Readers who
are not interested in the immunological background can skip the rest of this
introduction and move directly to the technical part, which starts in Section 2.
Our technical contributions are the following:

– We obtain both exact and asymptotic results for a single searcher’s optimal
behaviour (Section 3). This analysis clearly identifies two distinct parameter
regimes with quite different asymptotics.
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– We then apply these results to characterize the impact of parameter per-
turbations on the search performance (Section 3.5). This gives insight into
the robustness of an optimal searcher against such perturbations, as well
as bounds for the search performance when only imprecise estimates of the
search space parameters are available.

– Finally, we analyze the performance of a parallel search by multiple inde-
pendent searchers (Section 4).

1.2 Background: Modelling T Cell Immune Surveillance

The T cells of the immune system [6] screen for antigen (e.g. viruses, bacteria)
presented on specialized cells in lymph nodes. A mouse, for instance, has 30-35
lymph nodes distributed strategically across its body. Detection of antigen by
T cells is an important step for the initiation of an immune response. T cells
are highly specialized: It was estimated that for a given antigen, a mouse has
only around 100-200 T cells capable of detecting that antigen [7]. Because many
infections are localized (e.g. in the respiratory tract or the intestine), T cells
continuously circulate around the body in search for antigen, and migrate to a
different lymph node approximately once per day [8]. The cells are carried to the
lymph nodes via the blood stream, and hence essentially circulate at random.
Mapping this to the previously defined notation, the bags are the lymph nodes, R
corresponds to the time spent in the lymph node, and T (i, j) becomes a constant
T equal to the time spent travelling between lymph nodes. Since T cells spend
around 2/3 of their lifetime in lymph nodes [9], R ≈ 18h and T ≈ 6h.

The most interesting question is whether drawing with replacement is an
accurate model for antigen sampling within lymph nodes. By means of two-
photon microscopy, it has become possible to observe T cells in lymph nodes in
the living, intact animal. These experiments revealed that the search of T cells
for antigen is essentially a 3D random walk through the lymph node tissue [10].
Thus, we can indeed justify the drawing with replacement model as it is a quite
reasonable approximation of a 3D random walk. In the rest of this section we
give some more detail about this correspondence (note however, that this is a
mere exposition of well-known facts from random walk theory).

Consider a random walk in the lattice Z3, and let pn denote the probability
that the vertex reached by the random walk in its n-th step has been visited
before. Sn denotes the expected number of different vertices covered within the
first n steps, and rn the probability that the random walk returns to its point
of origin at least once within the first n steps. By reversing the random walk in
time, it is clear that pn = rn, and it is known that

r∞ := lim
n→∞

rn = sup
n∈N

rn = 1− 1
u(3)

= 0.3405373 . . . , (1)

which is Polya’s random walk constant [11]. Thus, we obtain the following asymp-
totic bound on Sn:

E[Sn] ≈ (1− r∞) n (2)
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Hence, every time a node is visited, we have a chance of at least 66% that it
is a node we have not visited before. Now assume that targets are distributed in
this lattice such that every vertex is a target with probability c. We are interested
again in the first hitting time, i.e. the number of steps it takes a random walk
to hit a target for the first time, denoted by H = H(c). Its expectation can be
evaluated as follows:

E[H] =
∞∑

j=1

j · Pr[H = j] =
∞∑

j=1

j · (Pr[H > j − 1]− Pr[H > j]) (3)

=
∞∑

j=0

Pr[H > j] =
∞∑

j=0

E[(1− c)Sj ] (4)

(5)

For c � 1, i.e. when (1 − c)n decreases very slowly, the last expression can be
approximated by

E[H] ≈
∞∑

j=0

(1− c)E[Sj ] ≈
∞∑

j=0

(1− c)(1−r∞) j (6)

=
1

1− (1− c)(1−r∞)
=

1
1− (1− c)0.659462670...

. (7)

This approximation, called the Rosenstock approximation [12], is known to give
quite good estimates for c < 0.05. Using the binomial series expansion, and
setting t∞ = 1 − r∞, we obtain for the (per step) success probability of the
random walk:

1
E [H]

≈ 1− (1− c)t∞ = 1−
t∞∑
k=0

(
t∞
k

)
(−c)k = c t∞ −O(c2) . (8)

Comparing this random walk search to a systematic search of the lattice ver-
tex by vertex (which is equivalent to drawing with replacement), we see that
both methods give rise to a geometric hitting time distribution. For small c,
the systematic search outperforms the random walk in terms of expected hit-
ting time by a factor of at most 1.5. Note that at least three spatial dimensions
are needed to make the random walk search competitive with the systematic
search – the random walk search strategy would be far less effective in a one- or
two-dimensional environment.

2 Formal Statement of the Special Case

Recall the definitions of bags with according hitting time distributions Pi(t) and
transit times T (i, j) from Section 1.1. We assume that the local search in a bag
is by sampling with replacement, i.e., for all bags i we have Pi(t) = ci. Hence,
the hitting time within bag i is geometrically distributed with parameter ci. We
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distinguish between two types of bags, called good bags and bad bags1. We fix
some constant c such that ci = c for all good bags ci. For the bad bags cj , we
set cj = 0. Furthermore, we assume the travel time T (i, j) = T to be constant.
Let ngood denote the number of good bags, and n be the number of all bags.
Then ν := ngood/n gives the fraction of good bags 2 Hence, when sampling the
bag i, the success probability in the current bag (which was drawn uniformly at
random from {1, . . . , n}) is c with probability ν and 0 with probability 1 − ν.
Because the next bag to travel to is chosen at random, our special case is now
fully characterized by the parameters c, T, and ν, and we will only consider the
nontrivial cases with 0 < ν < 1.

As mentioned in Section 1.1, it follows from Luby et al. [5] that the optimal
strategy is to transit to a new bag after a fixed residence time time Ropt. Even
though we have yet to determine Ropt, this means that we can restrict our
attention to searchers of the following type: The searcher picks a bag i uniformly
at random, spends time R in the bag drawing one sample per time step, and
then spends time T in transit to the next bag. This is iterated until a target
is found. Despite its simplicity, our special case gives rise to surprisingly rich
asymptotic behaviour, as we will see in the upcoming analysis.

3 Optimizing a Single Searcher

Since the parameters T, ν and c characterize the search problem and are thus
beyond our control, our goal is to tune the parameter R in order to maximize
search performance. This leads to an optimization problem: If a searcher spends
too much time in a bag i, it risks that i is a bad bag, in which case the time would
better be spent searching somewhere else. On the other hand, leaving the bag
i carries the risk that i could have been a good bag and the target might soon
have been found. If the searcher could detect which type of bag it is currently
in, then the optimal strategy would obviously be to transit immediately to new
bags until a good one is reached. However, because this is not possible, R must
be set to a value that balances between the two risks. We derive the following
results analytically:

– Expectation E [H] of the hitting time H (Proposition 1);
– Asymptotics of E[H] for large and small R (Propositions 2,3);
– The optimal residence time Ropt (Proposition 4); and
– Asymptotic expressions for Ropt for locally dominated and globally dominated

parameters (Propositions 5 and 6).

1 Note that there must at least be two different types of bags, otherwise there would
of course be no benefit in travelling between bags.

2 In the immune surveillance model, ν corresponds to the fraction of lymph nodes that
are near the area of infection (draining lymph nodes). For instance, in a literature
experiment with herpes simplex virus [13], there were 5 draining lymph nodes on
average, thus ν = 5/35.
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3.1 The Expected Hitting Time

Proposition 1. Let H denote the first hitting time of a search process according
to Section 2 with parameters R, T, c, and ν. Then H has expectation

E[H] =
1− c

c
− 1− ρ

ρ
R +

(
1− q

q

)
(R + T ) + 1 (9)

where ρ = 1− (1− c)R and q = νρ.

Proof. Let us call a sequence of searching a bag (which takes time R) and tran-
siting to the next bag (which takes time T ) a phase. Let U be a random variable
denoting the number of unsuccessful phases before the searcher finds a target in
a good bag in phase U + 1, and let S be the number of samples drawn in phase
U + 1 before the target is found. Then the hitting time is given by

H = (T + R) U + S + 1 . (10)

Since U and S are stochastically independent, it holds that

E[H] = (R + T ) E[U ] + E[S] + 1 . (11)

U is geometrically distributed with parameter q, hence E[U ] = (1 − q)/q. S on
the other hand has a geometric distribution that is “truncated” to the finite
support {0, . . . , R− 1}. With some algebra, it can be verified that

E[S] =
1
ρ

R−1∑
k=0

k (1− c)k c =
1− c

c
− 1− ρ

ρ
R . (12)

Putting S and U together, we obtain the result. ut

The above formula is indicative of the fact that the search is a combination
of two sampling processes with replacement: The global search for a good bag,
and the local search for a target in a good bag.

3.2 Asymptotics of the Expected Hitting Time

To understand the dependencies of the expected hitting time, we first analyze
its asymptotics for large and small R. For R ≥ M c−1 with M � 1 the term
(1 − c)R ≤ e−M becomes very small, and thus ρ close to 1. This results in the
following asymptotics:

Proposition 2. Let H,R, T, ν, c be defined as above, and fix a large constant
M � 1 such that R ≥ M/c. Then

E[H] ≈ 1− c

c
+

1− ν

ν
(R + T ) ∈ Θ(R) . (13)
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Hence, spending significantly more time searching a bag than the expected
hitting time c−1 for a good bag increases the overall hitting time linearly. On
the other hand, if R becomes too small, we get the following:

Proposition 3. Let H,R, T, ν, c be defined as above, and fix some small nonzero
ε � 1 such that R ≤ ε c−1. Then

E[H] ≈ 1
νc

+
T

νc
R−1 − T ∈ Θ (1/R) . (14)

Proof. If R ≤ ε c−1, we can use the approximation (1 − c)R = 1 − R c +
O((R c)2). This implies ρ ≈ c R and q = ν c R, which upon insertion into
Equation 9 gives the result. ut

The Θ(1/R) asymptotics for small R (i.e., halving an already small R almost
doubles the number of phases until a global hit occurs) can be intuitively ex-
plained by noting that most of the time is spent in transit between bags since
the success probability within a bag ≈ R/(νc) is very low (Figure 1).
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Fig. 1. The expected hitting time E[H] as per Proposition 9 and its asymptotics as
per Propositions 2 and 3 as a function of the residence time R for the parameters
ν = 0.1, T = 100, c = 0.001.

3.3 The Optimal Residence Time

For given ν, T and c, what is the optimal choice for R, i.e., the one that minimizes
E[H]? Let us denote this value by Ropt. It is given by the following proposition:

Proposition 4. Let H,R, T, ν, c be defined as above, and consider E[H] as a
function of R where T, ν, c are constant. Then the E[H] is minimized by

Ropt = W−1

(
− (1− c)

T
1−ν

e

)
1

ln(1− c)
− T

1− ν
+

1
ln(1− c)

(15)
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where W−1 is the non-principal branch of the Lambert W function [14].

Proof. We have to solve d
dR E[H] = 0, which is equivalent to

0 =
d

dR

[
1− ρ

ρ
R +

1− q

q
R +

1
q

T

]
=

d

dR

[(
1
ν
− 1
)

R + T/(1− ν)
1− (1− c)R

]
. (16)

Now, differentiating we get

0 = 1− (1− c)R + (R + T/(1− ν)) (1− c)R ln(1− c) (17)

⇔
(

R +
T

1− ν
− 1

ln(1− c)

)
(1− c)R = − 1

ln(1− c)
. (18)

This is a transcendental equation and thus cannot be solved for R using only
standard algebra. A tool for solving equations of this type, which arise in many
applications [14], is the Lambert W function defined by

x ex = y ⇐⇒ x = W (y) . (19)

Using this function, we can express the solutions x̂ of the equation (x̂+β) αx̂ = γ

in closed form with ŷ = αβγ lnα, because x̂ = W (ŷ)
ln α − β. Inserting α = (1− c),

β = T
1−ν −

1
ln(1−c) and γ = − 1

ln(1−c) in our case gives ŷ = −(1−c)
T

1−ν /e. Because
−1/e < ŷ < 0, the two branches W0 and W−1 of the Lambert W function both
solve the equation. The non-principal branch W−1 is the meaningful one in
our case because it maps to the interval (−∞,−1), while W0 maps to [−1, 0].
Inserting α, β, γ and ŷ yields the claimed expression. ut

3.4 Asymptotics of the Optimal Residence Time

The exact solution given by Proposition 4 for the optimal residence time is
rather complex and yields little insight into the dependencies between Ropt and
the parameters T, ν, and c. Thus, we now turn our attention to two important
regions in the parameter space for which more illustrative asymptotic forms
of Ropt can be derived. For simplicity, we assume that c is moderately small
(e.g. c < 0.1); a similar analysis is possible without this assumption, but the
asymptotic formulae become more complicated.

We will show the existence of two quite different parameter regimes. The
switching point between them is given by a rather unexpected trade-off:

Definition 1. Let H,T, ν, c be defined as above, and let c be moderately small
such that ln(1− c) ≈ −c. For

1
c
� T

1− ν
, (20)

we call H transit dominated. Otherwise, if

1
c
� T

1− ν
, (21)

then we call H locally dominated.
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Note that the parameter ν plays hardly any role in defining these two pa-
rameter regimes as in the interesting cases, ν is typically rather small (otherwise
the search problem would not be very different from a simple local search in one
bag). Thus, surprisingly, the transit time T is more important than the difficulty
of the global search problem, which can be measured by 1/ν rather than 1/(1−ν).

The upcoming two propositions yield quite interesting differences between
transit dominated and locally dominated settings.

Proposition 5. Let H be transit dominated by T, ν, c. Then

Ropt ≈
lnT − ln(1− ν) + ln c

c
. (22)

Proof. We use the following power series expansion for W−1(y), which converges
quickly for 1/e � y < 0 [14]:

W−1(y) = λ1 − λ2 +
∞∑

k=0

∞∑
m=1

ckm
λm

2

λm+k
1

(23)

= λ1 − λ2 +
t−1∑
k=0

t−k∑
m=1

ckm
λm

2

λm+k
1

+ O

((
λ2

λ1

)t+1
)

, (24)

where λ1 := ln(−y), and λ2 := ln(−λ1) = ln(− ln(−y)). The ckm are constants
that are not important for our analysis, since we asymptotically approximate
W−1 for y → 0 by truncating the sum terms of the power series (t = 0). For our
ŷ defined in the proof of Proposition 4 this results in λ1 = T

1−ν ln(1− c)− 1 and

W−1

(
− (1− c)

T
1−ν

e

)
= λ1 − λ2 + O

(
λ2

λ1

)
(25)

=
T ln(1− c)

1− ν
− 1− ln

(
1− T ln(1− c)

1− ν

)
+ O

(
λ2

λ1

)
. (26)

Inserting this asymptotic expansion into the closed form for Ropt given by Propo-
sition 4, some terms cancel out and we arrive at

Ropt = − ln
(

1− T ln(1− c)
1− ν

)
1

ln(1− c)
(27)

+ O

(
λ2

λ1 ln(1− c)

)
. (28)

In the region where T
1−ν � − ln(1 − c) ≈ c, the argument 1 − T ln(1−c)

1−ν of the
first logarithm is much larger than 1 and can be replaced by T

1−ν (− ln(1− c)).
This gives the approximation

Ropt ≈
lnT − ln(1− ν) + ln(− ln(1− c))

− ln(1− c)
. (29)

which is valid for any c in a transit dominated setting. Substituting − ln(1− c)
for c yields the claimed expression. ut

9



To understand why this approximation eventually breaks down for c → 0,
we look more closely at the O-term of Equation (28) for Ropt:

Ropt = − ln
(

1− T ln(1− c)
1− ν

)
1

ln(1− c)
+ O

 ln
(
1− T ln(1−c)

1−ν

)
T ln(1−c)2

1−ν − ln(1− c)

 (30)

Applying De l’Hôpital’s Rule it can be shown that Ropt without the O-term
approaches a constant value for c → 0, whereas the O-term starts to dominate.
This limit takes us to the locally dominated regime, which we examine next.

Proposition 6. Let H be locally dominated by T, ν, c. Then we have

Ropt ≈

√
2T

(1− ν)c
. (31)

Proof. In the transit dominated regime, the argument of W−1 in the closed form
of Ropt (Proposition 4) is close to −1/e, the branch point of the W function.
Near this branch point, the power series used in the proof of the previous result
is no longer useful (Figure 2, left). From the results of Corless et al. [14] one can
derive an alternative power series expansion for W−1 near the branch point:

W−1(y) =
∞∑

t=0

(ct)t = −1 + σ − 1
3
σ2 +

11
72

σ3 + . . . (32)

In this expression, σ = −
√

2 e y + 2, and thus |σ| ≤ 1. Again the ct are constants
that are irrelevant for our purpose, since we truncate the series after t = 1 to
obtain an asymptotic approximation. Inserting again the argument for y yields

W−1

(
− (1− c)

T
1−ν

e

)
= −1−

√
2− 2(1− c)

T
1−ν + O

(
1− (1− c)

T
1−ν

)
(33)

from which we get the following expression for Ropt:

Ropt =
−
√

2
ln(1− c)

√
1− (1− c)

T
1−ν + O

((
1− (1− c)

T
1−ν

)2
)

. (34)

By the definition of locally dominated parameters, we have Tc/(1 − ν) � 1.
Thus we can substitute (1− c)T/(1−ν) by 1−Tc/(1− ν). This yields the claimed
expression.

3.5 Implications for Robustness and Parameter Estimation

The asymptotic results derived in the previous section yield important insight for
situations where we have no exact knowledge about the parameters of the search
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the optimal residence time between the two regions described by Proposition 6 (densely
dashed) and Proposition 5 (dashed) for T = 1000, ν = 0.1 and varying c. The square
marks the point where T

1−ν
= 1

c
.

problem. For example, consider the following two questions: (1) A searcher’s resi-
dence time has been optimally calibrated, and now one of the search parameters
is perturbed. How much would the perturbation affect the searcher’s perfor-
mance? (2) We determine the search space parameters by statistical estimation.
How precise would our estimate need to be to get reasonable performance?

Assume that we set our R to within a factor κ of Ropt, i.e., Ropt/κ < R <
κRopt. Then it follows from the results in Sections 3.1 and 3.2 that E[H] is also
within a factor κ of its optimal value. Combining this with the results from the
previous section, we see that the situation is very different for the two parameter
regimes:

In the locally dominated regime (Proposition 6), we have square root asymp-
totics for 1/c, 1 − ν, and R, implying that E[H] would be within factor

√
κ of

its optimal value if one of these parameters is perturbed by factor κ. Hence, the
perturbation has sublinear impact. In the transit dominated regime (Proposi-
tion 5), the effect of perturbing T and 1− ν would even be merely logarithmic;
however, the effect of perturbing c in this regime would be linear. Note that in
either case, perturbing ν instead of 1 − ν by a small factor κ has virtually no
effect if ν is already small.

4 Parallel Search

In this section, we ask how the expected hitting time is reduced by employing
several searchers in parallel. We will limit our discussion to the case that the
searchers are not synchronized. Note however that being synchronized or not
only makes a substantial difference if both ν and c are close to 1, in which case
the search problem is anyway not very difficult. We assume that the searchers
cannot communicate with each other, and that there is no global control.

Let m denote the number of searchers and Hm the hitting time of such a
parallel search. For values of m that are significantly smaller than the expected
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hitting time E [H] of a single agent, the expectation of the m-parallel search can
be approximated by

E [Hm] ≈ E [H]
m

, (35)

since in this case the hitting probability of a single step grows approximately
by a factor m. This approximation will become invalid for large m, because
the bags become saturated with searchers and thus additional searchers will no
longer yield substantial speedup. However, in this situation it is still possible to
use the following approximation instead:

E [Hm] =
1

1− (1−Rνc/(R + T ))m
(36)

This approximation is obtained by noting that for a randomly chosen time step,
every searcher has an overall chance of Rν/(R + T ) to be in a good bag, and
within a good bag the chance of finding a target is c. Assuming that the fraction
of searchers in good bags at every timestep is indeed equal to γ = Rν/(R + T )
(rather than a random variable with expectation γ), we can approximate the
parallel search by random sampling with replacement with a success probability
of 1 − (1 − γc)m. Note that for m = 1, the above equation is equal (up to
the constant T ) to the equation in Proposition 3 describing the asymptotics of
E[H] for small R. Some experimental results are displayed in Figure 3. Notably,
while for optimally tuned searchers the speedup is indeed well described by the
above equations that predict a linear speedup with saturation, for non-optimal
residence times it is possible to obtain a superlinear speedup by increasing the
number of searchers (e.g. in Figure 3, around m = 100 for R = 1 and around
m = 20 for R = 100).

 1
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 100

 10  100  1000

E
[H

]

number of searchers m

E[H]/m for R=10
Equation 7 for R=10

R=10
R=1

R=100

Fig. 3. Speedup of the expected hitting time by m independent parallel searchers.
E[H] is plotted as a function of m for T = 10, ν = 0.1, and c = 0.12591, which gives
Ropt = 10. For the optimally tuned population, the approximate expected hitting
times as predicted by Equations 35 and 36 are displayed, where Equation 35 describes
a power law with slope -1. Per data point we performed 1000 simulations, so that all
standard errors of the mean were less than 2%.
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5 Conclusions and Future Work

We have stated a “foraging-type” model of stochastic search with locally clus-
tered targets. We performed an in-depth theoretical analysis of the optimal be-
haviour of a single searcher in this model. The special case corresponds to the
behaviour of T cells in the immune system, and is more generally valid for all
search processes of this type where the local search is reasonably approximable
by drawing with replacement (e.g., the local search is a ≥ 3D random walk). As
mentioned in the beginning, optimization questions of this type arise in many
fields, and we are confident that the model can be applied or extended to many
such problems as it is not very immune system-specific. Our work raised many
questions to be pursued in the future:

Generalization to other hitting time distributions. The most obvious question
is how we can generalize the analytical results obtained for our special case to
other scenarios. For instance, concerning our application of modelling infection
screening by T cells, there is a hypothesis [15] that the cells need to hit sev-
eral targets in order to be activated rather than just one. This would give rise
to the following generalization of our special case: If c is the probability for a
single hit in a good bag per time unit, and k is the number of hits, then the
expected hitting time within a good bag would follow a negative binomial dis-
tribution with parameters c and k instead of a geometric one (which is equal
to a negative binomial distribution with k = 1). Other distributions of interest
include the Weibull distribution which can be used to model the time to failure
of systems with constant failure rate; this could be interesting for the quality
control scenario.

Parameter estimation and adaptive search. Often we will not know the search
space parameters precisely. Thus, the search cannot guarantee to start with an
optimal behaviour for the given system. How does a good or optimal strategy
look like to estimate the parameters and to adjust the search to the optimal
values? Similarly, the parameters may change over time. For instance, an intru-
sion detection system might face a sequence of intrusions where each intrusion
is governed by a certain parameter setting. This setting may change slowly over
the time. Knowing the parameters at the beginning or after some period of es-
timation the searchers could use a strategy optimized for this setting. But later
after the change of some parameters this might not longer be the case. How
could one adjust in this case?

Application to combinatorial optimization problems. In the introduction, we
mentioned the connection of our model to Las Vegas algorithms with expen-
sive restarts. Our model is potentially applicable to combinatorial optimization
problems having the property that solutions form clusters in the search space,
which e.g. is the case for suitably encoded versions of the traveling salesman
problem (TSP). Large instances of the TSP would also have the property that
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generating a starting point (a tour with a reasonably low weight) takes sub-
stantially longer than a local search step in the problem space (e.g. by locally
modifying some edges). It remains to be seen whether taking the restart time
into account explicitly could lead to substantially faster stochastic algorithms for
such problems. In our notation, the bags i for such a problem would be differ-
ent starting locations in the problem search space3, and (the cumulants of) the
Pi(t) would be the runtime distributions of the algorithm when started at loca-
tion i. T (i, j) would most likely be a constant function describing the time cost
of restarting the algorithm, To extend our theoretical results to such settings,
it would hence be crucial to study arbitrary distributions Pi(t) with constant
T (i, j) = T , which would generalize Luby et al. [5] where T (i, j) = 0.
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